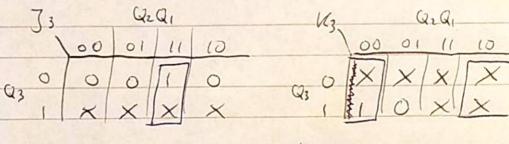
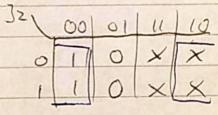
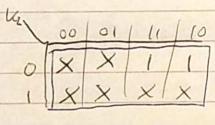
Problem ±B a) The equivalent resistance will be larger than Ky because ky is in series with the rest and the sum will always be larger. b) Replace the sources by their internal resistance and we have: TRI TR3 R3(RitR2) Then RTh = Ry + R3//(R1+R2) = Ry + RI+RZ+R3

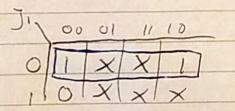
18] () Draw the arrows conventions and the mesh currents. ITO IT I I I I Voc (airrent source) Mesh 1: II = I (Leve) Mesh 2: - V/2 - V/3 - V - V/21 = 0 alenon $\mathcal{W}(\mathcal{C}shim) \Rightarrow - \mathcal{I}_{2}\mathcal{R}_{2} - \mathcal{I}_{2}\mathcal{R}_{3} - \mathcal{V} - (\mathcal{I}_{2} - \mathcal{I}_{1})\mathcal{R}_{1} = 0$ => V + I2(R, +R2 + R3) - IR, 50 (hely mesh I. eg.) => $T_2 = (-V + IR_1) \frac{1}{R_1 + R_2 + R_3}$ We need Vth = Voc = VR3 + V So $V_{th} = V + I_2 R_3 = V + (-V + I R_1) \frac{R_3}{R_1 + R_2 + R_3}$ $= \sqrt{\frac{R_1 + R_2 + R_3}{R_1 + R_2 + R_3}} - \sqrt{\frac{R_3}{R_1 + R_2 + R_3}} + IR_1 \frac{R_3}{R_1 + R_2 + R_3}$ $= V \frac{R_1 + R_2}{R_1 + R_2 + R_3} + I R_1 \frac{R_3}{R_1 + R_2 + R_3}$

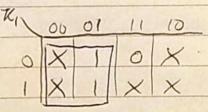
Problem 2B a) The magnitudes of the voltages are: VLX = IXL, VC = IXC, VR = IR So $V_{L} = 0.1 V$, $V_{L} = 9V$, $V_{R} = 4.5 V$ And the phasor diagram: NUI VL 200m: Vesoiv VR VR 6) [like 2 4 6)] c) The circuit acts as a low-pass filter: · the inductor - passes low - frequency signals without much voltage dop (like a mire) but high - frequency signals withyes appear over L as its current connet change instancously or - has a low reactance for low frequencies or - act as a DC pass and high - I blocher. · He coparitor - voltage connot change instan taneously so that high frequencies do not appear in Us or - has a large reactance for tooth frequencies so that these appear d) For low f, or w, $\frac{U_0}{U_1} \rightarrow \frac{1}{Gw^{-2}}$ $20 \text{ by}_{10} (\overline{6} \overline{6} \overline{12}) = 20 \text{ by}_{10} 10^2 = 40 \text{ dB} \text{ [decode]}$

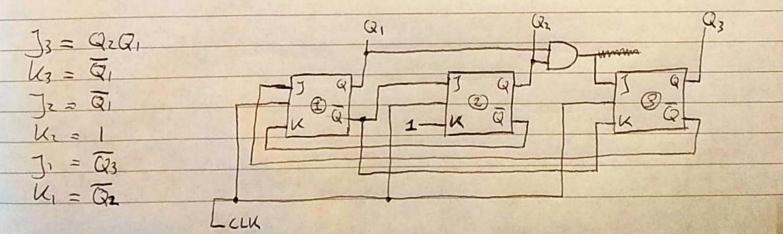

e) Use the coltage divider . Njwe R+jwL+ Njwe $V_0 = U_1 \frac{Z_c}{2R + Z_c + Z_c} \implies \frac{U_0}{U_1} =$ $\frac{v_0}{v_1^2} = \frac{1}{jwRC - w^2LC + 1}$ and we have: D=-LC, E=RS, F=G=0.


Problem 3B a) and c) like 3A b) method I : KCL vio RI CI HCF in RI CU U+=0, U_=U+, U_=0 (virtual ground) Apply Lecc in note A: in tip = 0 => $\frac{U_i}{R_i + 2u_i} + \frac{U_o}{Z_{iF}} = 0 \implies U_i = -\frac{Z_{iF}}{R_i + 2u_i}$ Yjwer $= -\frac{1}{R_1 + \frac{1}{j}} = -\frac{1}{j} = -\frac{1}{j} = -\frac{1}{j} = \frac{1}{j} = \frac{1}{j$ Method 2: superposition. $U_{-} = U_{i}^{2} \frac{2c_{F}}{R_{i} + 2c_{i} + 2c_{i}} + U_{0} \frac{R_{i} + 2c_{i}}{R_{i} + 2c_{i} + 2c_{i}}$ (1) U+=0, U_=U+=> U_=0 (virtual earth) $\Rightarrow (1) = 0 \Rightarrow \frac{v_0}{v_c} = -\frac{z_{cF}}{R_1 + z_{c1} + z_{c2}} \frac{R_1 + z_{c1} + z_{c2}}{R_1 + z_{c1}}$ $= -\frac{Z_{LF}}{R_1 + Z_{LI}} = -\frac{1}{jwC_F} \frac{1}{R_1 + \frac{1}{jwC_I}}$


Problem 4.1 A a) E CD 00 01 11 10 01100 00 0 AB 01 $E = \overline{ABCD} + AB + A\overline{D}$ 10 0 00 01 B]a) i × 00 ABOIXX $H = \overline{A} + CD + \overline{B}\overline{D}$ 00 01 11 10 Z(a) × 0 00 ABOILXI 0 0 · × · × V= AC+ BD+ ABD o X 0


4.2B] 0,3,5,4,2,1


		and the second second second		and the second second	and the second s
Desimal	Q3 Q2 Q1	O3 Q2 Q,	J3 K3	Je Ur	[]. k.
0	0 00	011	ox	IXI	IX
3	011	101	IX	XI	XO
5	101	100	XO	OX	XI
4	100	010	XI	1×1	υX
2	010	001	OX	×I	IX
1	001	000	υX	OX	XI
6	110	XXX	XX	XX	XX
7	111	XXX	XX	XX	XX
1					
	1				



nportant: for ar	ny and all points given the	e line of reasoning should be there. J	lust the final answer does not yield any p	oints.
Problem 1 2.5 point	Novice	Intermediate	Competent	Master
a)	0 point incorrect answer	-	-	0.5 point correct, complete explanation mentioning th series or parallel nature of the resistor involved with respect to the rest
b)	0 point more than 2 mistakes from "competent" level or , no resulting circuit drawn or explanation in words given (even if correct final answer)	0.25 point 2 mistakes from "competent" level or , multiple mistakes within one such level	0.5 point mistake in internal resistances or , mistake in parallel/series combination leading to final answer or , final answer with parallel operator "//"	0.75 point sources correctly replaced by internal resistance provides the resulting circuit, or explains this in words correct derivation of parallel/series combination leading to final answer final answer does not show parallel operato "//"
c) Circuit & definitions	0 point more than 1 mistake from "intermediate" level	0.25 point directions of loop currents missing or , direction of voltage arrow convention missing or , V_Th incorrectly defined	-	0.5 point defines all loop current directions defines all relevant voltage arrow conventio used defines V_Th = V_OC in correct way
c) Loop equations & solving	0 point no answer or , mistakes in every "master" level point	0.25 point multiple mistakes from "master" level or , showing understanding of KCL and mesh, but missing complete answer	0.5 point correct signs of voltages going through loop, or 1 mistake or , correct loop currents (or subtractions thereof) used, or 1 mistake	0.75 point correctly sets loop current to I of current source (if present) correct signs of voltages going through loop correct loop currents (or subtractions thereor used for these voltages combines loop equations to find loop current expression

Problem 2 2.5 point	Novice	Intermediate	Competent	Master
a)	0 point does not know how to calculate voltage magnitudes and how a phasor diagram is constructed	0.25 point mistake in phasor directions or magnitude or , phasor combination not drawn correctly	-	0.5 point correct calculation of voltage magnitudes correct drawing of phasors: direction and (approximate) length correct connection of phasors, including input voltage
b)	0 point does not correctly infer accuracy of the masurement. Does not compare circuit resistance to resistance of device	0.25 point only compares voltmeter impedance magnitude to that of the element it is connected across	-	0.5 point correctly compares voltmeter impedance magnitude with that of circuit and explains that this results in voltage drop, or that this results in significant loading of the circuit and therefore voltage drop
c)	0 point does not explain even partial functioning of filter correctly, from either C or L	0.25 point can only explain capacitor or inductor contribution to filter or , 1 mistake in the way capacitor or inductor contributes	-	0.5 point correct statement of type of filter explains contributions from both capacitor and inductor to this result
d)	0 point more than 1 mistake from "intermediate" level	0.25 point mistake in limit or, mistake in conversion to decibels or, sign error	-	0.5 point correctly takes the limit to high or low frequency, finding a quadratic dependence correctly converts this quadratic dependency to decibels/decade correct sign of answer
e)	0 point does not arrive at transfer function through voltage divider	0.25 point 1 or 2 mistakes in transfer function or constants D, E, F, G	-	0.5 point uses voltage divider to write transfer function correctly writes transfer function in terms of omega provides resulting constants D, E, F, G

Problem 3 2.5 point	Novice	Intermediate	Competent	Master
a)	0 point incorrect answer	0.25 point mentions that ideal opamp has no input bias current, or that opamp has infinite input resistance, but does not adequately explain mechanism		0.5 point correctly recalls that an ideal opamp has no input current, meaning that no voltage drops across R
b)	0 point more than 2 mistakes of "master" level	0.5 point 2 mistakes of "master" level	1 point uses KCL, but no clear definition of current directions or, mistake in rewriting or, final answer contains parallel operator "//"	 1.5 point { uses KCL, defining the direction of the currents or, uses superposition theorem } invokes v+=v-, ground potential arrives at vo/vi equation through rewriting no parallel operator "//" used in final answer
c)	0 point incorrect answer	0.25 point mentions that R can be used for correction of input bias current, but does not adequately explain mechanism		0.5 point states that non-ideal opamp has input bias current explains that this leads to a non-ground potential at v- explains that R can be used to correct potential at v+ to reduce effect of the input bias current on the output

Problem 4.1	Novice	Intermediate	Competent	Master
	0 point more than 2 mistakes in rectangles or simplified expressions given correctly, but no supporting evidence in K-map	0.3 point 2 mistakes in rectangles or all do-not-care conditions covered by rectangles as well or additonal, superfluous rectangle drawn (covering the 1s)	0.6 point 1 mistake in rectangles leading to either one product term too large or an additional rectangle necessary	1 point correct, fully simplified sum-of-products expression supported by drawn rectangles
Problem 4.2 b) 1.5 point				
	0 point entirely different counter from book or all mistakes from "competent" ->	0.25 point ordering of states is wrong or multiple mistakes from "competent" level ->	0.5 point minor "sloppy" mistakes present or not all states are present and correct or coherent mistakes in next states or coherent mistakes in J-K input conditions	0.75 point all states are present and correct (including unused states) next states are labelled and correct (including do not cares) J-K input conditions are correct (including do not cares)
expressions	0 point more than 2 mistakes or K-maps missing and Boolean expressions incorrect	0.25 point 1 or 2 mistakes in the simplified expressions (in the presence of K- maps)	-	0.5 point correct, simplified expressions (not necessarily using K-maps)
Diagram Drawing	0 point multiple mistakes from "intermediate" level ->	0.1 point Clock line not drawn or minor mistakes converting Booleans into drawing or no clear distinction between crossing lines and connecting lines	-	0.25 point Clock line present correct drawing of Boolean expressions clear distinction between crossing lines and connecting lines